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Background Offshore shear-wave splitting Shear-wave splitting as a proxy for S,,,,.., across the UK

Borehole measurements of stress (breakout, overcoring etc.,) have limited spatial _ o : —
resolution. Data recorded by 60 Permanent Reservoir Shear-wave splitting is measured for 902 earthquake- Q}E%@ﬂ e Undefined
Monitoring (PRM) stations at the Snorre field, station pairs across the UK. v - A Y WSM Data nderined
Seismic anisot has b 4 to interoret S " tectonic and volean Northern North Sea. 5 100 B Quality ® Thrust Faulting
eISmic anisotropy nas been used 10 INerpret oymax 1N tectonic and volcanic o The 329 measurements with uncertainty in ¢ and 6t o ¢ A O m Strike-slip
| | 5.1 Tampen Spur earthquake and 16 analysed. ¢ 50- 58°N B This Study
This project, part of the ACT3 funded SHARP Storage consortium, tests if aftershocks with local magnitudes in the range S O —~
microseismic shear-wave splitting can be used to monitor stress state and 0.1 <M, < 2.6 (Jerkins et al., 2024). The majority of the results are at two localities: = ; -
changes. 0 10 20
Results show that high-quality shear-wave 1. Preston New Road, Lancashire Fast polarisation uncertainty [°] &
We use data recorded across the UK and data recorded by Permanent Reservoir splitting measurements can be made by _ —
wonitoring (PRM) systems at the Snorre field. / ofishore PRM systems for microseismicity. 2. Newdigate, Surrey 9
" . : : . o L 100-
Shear-wave splitting fast polarisation directions ; M. °°° At Newdigate, temporal variations in seismic anisotropy (3) 5
(@) at Snorre show good agreement with data ®; ’;" are also observed. >
from the World Stress Map (Heidbach et al., o 50 56°N
S 2018) and new stress data from Fellgettetal., | © 3 _ 1. Preston New Road S
5} —_— =
ummary (2022). /: Shear-wave splitting is measured for 173 0- — .
earthquake-station pairs using microseismic events ° Lag timZ uncertalir?ty [ms]ls
(-1.7 = M_ = 2.9) recorded by stations monitoring
Shear-wave splitting measured for microseismicity can be used to N two stages of hydraulic fracturing at Preston New
interpret S, orientation. Road, Lancashire.
60 30
PRMs are suitable for measuring microseismic shear-wave splitting. v We are able to directly compare measured ¢ with
o _ o _ Stmax (173 £ 7°) interpreted from borehole breakout 27¢ 90 270
Ttemporhal varla(tjlor_ls 'P si:\ea:_-watye splitting can be used to infer and drilling-induced tensile fractures from the
SIess changes auring fauit activation. 61°N nearby Preese Hall 1 well (Clarke et al., 2019). 20 g 2883 g;
If offshore microseismic monitoring is implemented for an offshore - , SHmax
CO, site then shear-wave splitting is an useful "free" added value. Shear-wave splitting generally agrees with Sz, _
with local stress rotation at AQO4. Some stations 1 PNR3B

(101, 103B) show evidence of secondary fractures. 3o

Anisotropy shows no signs depth dependence 27c
(event depths range from 1.6 to 2.9km) and no

temporal variation between Stage 1 and Stage 2. S
Stations IOXX were renamed to PNRXX from m== pnr2

Input S. Event: 2022-03-22 02:29:25.00. 180

Shear-wave splitting is a clear = Jxﬁvvmﬁh Stage 1 to Stage 2
2. Newdigate

indicator of seismic anisotropy. .. " [V
In 2018-9 an earthquake swarm occured in Southeast England near Newdigate, Surrey.

Stress-induced anisotropy
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Fractures and microcracks
preferentially align  with
Sumax  When  there are
differential horizontal
stresses (Crampin, 1999).

Time relative to origin (s)
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Incident shear-waves are split | 1= 79002 450", 5t=0.047 200025
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Fast polarisation [°]

We measure the polarisation, ¢, ™™ 108 quality A-C shear-wave splitting measurements made for events with depths in the
| of the fast shear-wave and the ) range 2 - 3.6 km and magnitudes in the range -1.6 < M, < 3.1 (Hicks et al., 2019). T RUSH
This generates a shape ‘ delay time ot between fast and 5 oo g 0o > 10 - E -} STAN
- ' slow shear-waves. o e 0 ‘ - o . 2 e 3 ¥ GAT2
pre_fe:red_ ofrlebnjcatlon (SPO) e i 000 005 010 013 We see a large local scale rotation in ¢ North and South of the Newdigate fault, E Ij : T . L T GATW
anisotropic rapric. ? e eror c0sea particularly at stations STAN and RUSH. Results North of the fault agree with I 5 ¥ [ - ; T
Station: RUSH . . =S o i R, -
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3. Time varying anisotropy at Newdigate

For the Newdigate sequence, we also see evidence for temporal changes in seismic
anisotropy. The figure above shows shear-wave splitting fast polarisation directions (¢)
and percentage anisotropy plotted over time, along with earthquakes in the Newdigate

Station: RUSH. N = 43
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